
Login : Jurnal Teknologi Komputer
ISSN : 2302-9692 (print) | 2723-8695 (online)
Vol. 18, No. 01, 2024, pp. 35-44

 http://login.seaninstitute.org/index.php/Login  35

Journal homepage: http://login.seaninstitute.org/index.php/Login

Analysis of the Effect of Padding Schemes on Entropy, Bit

Distribution, Hash Collisions, and Processing Time in Merkle-

Damgård

Valois Vicenti Sirait1, Mia Elisabet Malau2, Jeni Percani Sinaga3, Dian Pratama

Gulo4, Berkat Damai Halawa5
 Fakultas Ilmu Komputer, Universitas Katolik Santo Thomas, Indonesia

Article Info ABSTRACT

Keywords:

Merkle Damgard, Padding,

Hashing, Entropy, Hash

Collision

 Data security in cryptographic systems is highly dependent on the strength of

the hashing algorithm. One of the most commonly used hashing structures is

Merkle-Damgård, which converts the compression function into a fixed-size

hashing function. The padding technique in this structure plays an important

role in determining the bit distribution, entropy, and the probability of collision

in the hash results. This study aims to analyze and compare three padding

methods, namely 1 & 0 bit padding, repeating pattern padding (0xAA), and 1

bit padding (0xFF), based on bit distribution parameters, Shannon entropy,

hash collision, and processing time. The results show that 1 bit padding (0xFF)

has the highest Shannon entropy value (0.9940), indicating a better level of

randomness compared to other methods. In terms of bit distribution, this

padding also produces better balance than other paddings. However, the hash

collision rate (74.90%) is still relatively high, indicating that the padding

method alone is not enough to significantly reduce the probability of collision.

In terms of time efficiency, padding bits 1 & 0 have the fastest execution time

(0.000132 seconds), while padding bit 1 (0xFF) has the longest processing

time (0.000177 seconds). With these results, it can be concluded that the

padding method affects the hash characteristics, but does not significantly

reduce the collision probability. Therefore, further optimization is needed to

improve the security of Merkle-Damgård-based hashing.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Valois Vicenti Sirait

Fakultas Ilmu Komputer, Universitas Katolik Santo Thomas, Indonesia

E-mail: valoissirait0@gmail.com

1. INTRODUCTION

Merkle-Damgård is one of the key constructions in cryptographic hash function design.

Developed by Ralph Merkle and Ivan Damgård in 1989, this technique is used in various popular

hash algorithms such as MD5, SHA-1, and SHA-2.(Ghanimi et al., 2024). One of the main

components in this security system is, which functions to convert data into a unique representation

with a fixed length.(Sitorus et al., 2024). The most common hashing structure used in modern

algorithms is the Merkle-Damgård, a transformation that converts a compression function into a

fixed-size hashing function.(Tiwari, 2017). Hashing algorithms such as MD5, SHA-1, and SHA-2

use this structure to ensure data security in a variety of applications, including authentication, digital

signatures, and data integrity.(Anwar et al., 2021).

In the Merkle-Damgård based hashing process, padding technique plays a crucial role. Padding

is a procedure used to adjust the input length to match the block size processed by the hashing

http://login.seaninstitute.org/index.php/Login
https://creativecommons.org/licenses/by-sa/4.0/
mailto:valoissirait0@gmail.com

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 1, 2024 : 35-44

36

algorithm. According to(Nandi, nd)that padding is very necessary for hashingMerkle Damgård. The

padding method used can affect the bit distribution in the hash result, entropy, and the probability of

collision. Therefore, the study of padding in the Merkle-Damgård structure is important because it

can affect the effectiveness and security of the resulting hashing algorithm.

One of the main challenges in this research is to determine the optimal padding method to

generate hashes with a high degree of randomness, minimize collisions, and ensure computational

efficiency. Different padding techniques can produce different bit distributions, which ultimately

affect the hash entropy and the probability of collisions. Therefore, a deeper understanding of the

impact of different padding techniques on hashing results is essential to improve the security of

systems using Merkle-Damgård structures.(Coron et al., nd).

Previous research has shown that padding schemes play an important role in determining

entropy, bit distribution, security against hash collisions, and processing time efficiency in Merkle-

Damgård-based algorithms. The development of secure and efficient padding schemes remains a

major focus in modern cryptography research.(Ariesanda, nd).

This study aims to analyze and compare various padding methods used in Merkle-Damgård

based hashing algorithms. The analysis is carried out based on several parameters, namely the

distribution of bits in the hash results, the resulting entropy value, and the hash collision rate. By

evaluating the effect of each padding method on these parameters, this study is expected to provide

insight into the most effective padding method in improving the security and efficiency of hashing

in various cryptographic applications. In addition, this study also aims to assess the processing

efficiency of each padding method to ensure that higher security does not significantly sacrifice

system performance.

Through this research, it is expected to gain a better understanding of how different padding

methods work and how to choose the most secure and efficient padding in various cryptographic

scenarios. Thus, the results of this study can contribute to the development of more secure, efficient,

and resistant hashing algorithms against cryptographic attacks, as well as provide a foundation for

further research in the field of information security.

2. RESEARCH METHODS

This study designs a research method that aims to analyze padding onMerkle-Damgård

structure. Figure 1 shows the workflow of the research model conducted in this study, starting from

data input to parameter evaluation.

Figure 1.Research Flow Diagram

Data Input

Data input is the first stage in the hashing process or in other cryptographic algorithms, where

the data to be processed is entered into the system. Input data can be text, numbers, images, or

information that you want to protect or change into a more secure format, for example through a hash

function.(Maysanjaya & Dermawan, 2024). For example, data such as passwords, messages, or

documents to be hashed. In the Merkle-Damgård method, the input data is called a message (M) and

then it will be broken into fixed-size blocks (b bits), which are then processed through a hash function

to produce a secure hash value.

Padding

Padding is the process of adding additional data (usually bits or bytes) to input data to meet a

certain size requirement by a hashing or cryptographic algorithm.(Harsa Kridalaksana & Arifin,

2016). Padding is important because many hashing algorithms require input in a specific block size

(e.g., 512 bits or 1024 bits). Padding ensures that the length of the data fits into the required block.

For example, a message(M) is split into blocks of a fixed size (b bits). If the length of the message(M)

is not divisible by the block size, then padding must be done so that the total length of the data is a

 

Analysis of the Effect of Padding Schemes on Entropy, Bit Distribution, Hash Collisions, and Processing

Time in Merkle-Damgård (Valois Vicenti Sirait,et.al)

37

multiple of the block size. In the Merkle-Damgård scheme, there are several padding methods that

can be used to ensure that the input length fits the block size required by the hash function. Padding

plays an important role in determining how the data is padded before further processing. Some

commonly used padding methods include:

1. Padding Bits 1 and 0

𝑀𝐼 = 𝑀 || 1 || 0 … 0 ||len(𝑀)

Explanation:

Mis the original data to be hashed

|| is a concatenation operator that combines two pieces of data into one.

1(bit) describes padding starting by adding 1 bit at the end of the M data.

0..0 Indicates after bit 1, add zero bits according to multiples of the block size.

len(M) is the length of the original data in bits.

2. Padding With Repeating Pattern (0xAA)

𝑀𝐼 = 𝑀 || 0xAA|| … ||len(𝑀)

Explanation:

Mis the original data to be hashed

||is a concatenation operator that combines two pieces of data into one.

0xAA is a hexadecimal number (10101010 in binary)

…adds repeating patterns (0xAA) in multiples of the block size

len(M) is the length of the original data in bits.

3. Padding with Bit 1 (Byte 0xFF)

𝑀𝐼 = 𝑀 || 0xFF|| … ||len(𝑀)

Explanation:

Mis the original data to be hashed

||is a concatenation operator that combines two pieces of data into one.

0xFF is(11111111 in binary)

… adds repeating patterns (0xFF) in multiples of the block size

len(M) is the length of the original data in bits.

Hashing Initialization

Hashing Initialization is a stage that involves the initialization of the initial value of the hashing

algorithm, which will be used to start the hash calculation process. Usually, this initial value is a

predetermined constant value, which serves as a starting point for calculating the hash value. The

hash function starts with an initial chaining value H0 which is usually determined by the algorithm

(e.g., a constant value). H0 is referred to as the Initialization Vector (IV), which is usually initialized

to a fixed value(Thampi et al., nd).

Iterative Block Hashing

Iterative block hashing is an iterative block hashing process that divides the input data into

smaller blocks and then processes each block repeatedly (iteratively) to produce a hashing value. The

hashing function will be applied to each block of data, and the result will be affected by the previous

block, forming a more complex chain. Each Mi block is processed sequentially through the

compression formula:

𝐻𝑖 = 𝑓(𝐻𝑖−1, 𝑀𝑖)

Explanation:

𝐻𝑖
 is the new hash value

𝑓is a compression function that mixes 2 inputs and𝐻𝑖−1𝑀𝑖

𝐻𝑖−1is the Chaining Value or hash value of the previous block.

𝑀𝑖 is the i-th data block that comes from the original message after being split into small blocks of

fixed size.

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 1, 2024 : 35-44

38

Hashing Finalization

Hashing Finalization is the final stage in the hashing process, where the interim computation results

are further processed to produce a final hash value ready for use.After all blocks are processed, the

hash result is determined by the formula:

𝐻𝐹𝑖𝑛𝑎𝑙 = 𝐻1 || 𝐻2 || 𝐻3 ||. . . || 𝐻𝑛

Explanation:

𝐻𝐹𝑖𝑛𝑎𝑙is the hash result

𝐻1, 𝐻2 , 𝐻3 , 𝐻𝑛 is the hash value of each iteration (each padding block).

||is a concatenation operator that combines two pieces of data into one.

Parameter Evaluation

Parameter evaluation is the process of assessing the quality and security of a hash algorithm

based on various technical aspects. This evaluation aims to ensure that the hash algorithm has

characteristics that are safe, efficient, and resistant to cryptographic attacks. Some of the main

parameters evaluated include Bit Distribution, Shannon Entropy, Hash Collision, Processing Time

& Computational Cost(Waluyo, 2023).

a. Bit Distribution

Measures how random the bit distribution is in a hash result. A good hash should have an even

bit distribution to prevent patterns that can be exploited by an attacker.

b. Shannon Entropy

Measures the degree of randomness and uncertainty in a hash result. The higher the entropy,

the harder the hash is to predict or compress, making it more secure against statistical analysis

attacks.

c. Hash Collision

When two inputs in a hash algorithm get the same hash value, it is called a "hash collision".

Since hash functions have a fixed output length but accept inputs of infinite size, collisions

always occur.

d. Processing Time

Processing time to determine the duration of time required to process and display the hash

results of the message(M), providing an overview of the computational efficiency for each

type of padding.

3. RESULTS AND DISCUSSION

The results and discussion were carried out using three paddings analyzed in this study, namely

padding with bits 1 and 0, padding with a repeating pattern (0xAA) and padding with bit 1 (Byte

0xFF).

Results and Discussion Using Padding with bits 1 and 0

Data Input

In the data input, the message (M) and character block size are as follows:

M= GROUP TWO

Block size: 5 characters

M1=”KELOM”, M2=”POKDU”, M3=”A”

Padding

The original M3 message consists of only one character, so it needs to be padded to a block

length of 5 characters (40 bits) with the following steps:

1. ASCII to binary conversion: "A" → ASCII(65) → 01000001

2. Add bit 1 after data: 01000001 1

3. Increase bit 0 to reach 40 bits: 01000001 10000000 00000000 00000000 00000000

4. Add message length: Length of "A" is 8 bits →binary: 00001000

5. Combine each binary, final result: 01000001 10000000 00000000 00000000 00001000

6. Convert the final result to decimal: [65, 128, 0, 0, 8]

 

Analysis of the Effect of Padding Schemes on Entropy, Bit Distribution, Hash Collisions, and Processing

Time in Merkle-Damgård (Valois Vicenti Sirait,et.al)

39

Padding result M3 =[65, 128, 0, 0, 8]

Hashing Initialization

Initial chaining value (H0) = 0

Iterative Block Hashing

Block 1: M1=”KELOM”

𝐻1 = 𝑓(𝐻0, 𝑀1 = (0 + ASCII(′K′) + ASCII(′E′) + ASCII(′L′) + ASCII(′O′)
+ ASCII(′M′)) 𝑚𝑜𝑑 256

𝐻1 = (0 + 75 + 69 + 76 + 79 + 77) 𝑚𝑜𝑑 256

𝐻1 = 376 𝑚𝑜𝑑 256 = 120

Block 2: M2=”POKDU”

𝐻2 = 𝑓(𝐻1, 𝑀2 = (0 + ASCII(′P′) + ASCII(′O′) + ASCII(′K′) + ASCII(′D′)
+ ASCII(′U′)) 𝑚𝑜𝑑 256

𝐻2 = (120 + 80 + 79 + 75 + 68 + 85) 𝑚𝑜𝑑 256

𝐻2 = 507 𝑚𝑜𝑑 256 = 251

Block 3: M3= Padding Result [65,128,0,0,8]

𝐻3 = (251 + 65 + 128 + 0 + 0 + 8) 𝑚𝑜𝑑 256

𝐻3 = 452 𝑚𝑜𝑑 256 = 196

Hash Finalization

𝐻𝐹𝑖𝑛𝑎𝑙 = 120 || 251|| 196

The hash value of M="GROUPSECOND" is 120 251 196

Results and Discussion Using Padding With Repeating Patterns (0xAA)

Data Input

In the data input, the message (M) and character block size are as follows:

M= GROUP TWO

Block size: 5 characters

M1=”KELOM”, M2=”POKDU”, M3=”A”

Padding

The original M3 message consists of only one character, so it needs to be padded to a block length

of 5 characters (40 bits) with the following steps:

1. ASCII to binary conversion: "A" → ASCII(65) → 01000001

2. Add pattern 0xAA (10101010) 40 bits: 01000001 10101010 10101010 10101010 10101010

3. Add message length: Length of "A" is 8 bits →binary: 00001000

4. Combine each binary, final result: 01000001 10101010 10101010 10101010 00001000

5. Convert the final result to decimal: [65, 170, 170, 170, 8]

Padding result M3 =[65, 170, 170, 170, 8]

Hashing Initialization

Initial chaining value (H0) = 0

Iterative Block Hashing

Block 1: M1=”KELOM”

𝐻1 = 𝑓(𝐻0, 𝑀1 = (0 + ASCII(′K′) + ASCII(′E′) + ASCII(′L′) + ASCII(′O′)
+ ASCII(′M′)) 𝑚𝑜𝑑 256

𝐻1 = (0 + 75 + 69 + 76 + 79 + 77) 𝑚𝑜𝑑 256

𝐻1 = 376 𝑚𝑜𝑑 256 = 120

Block 2: M2=”POKDU”

𝐻2 = 𝑓(𝐻1, 𝑀2 = (0 + ASCII(′P′) + ASCII(′O′) + ASCII(′K′) + ASCII(′D′) + ASCII(′U′)) 𝑚𝑜𝑑 256

𝐻2 = (120 + 80 + 79 + 75 + 68 + 85) 𝑚𝑜𝑑 256

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 1, 2024 : 35-44

40

𝐻2 = 507 𝑚𝑜𝑑 256 = 251

Block 3: M3= Padding Result [65, 170, 170, 170, 8]

𝐻3 = (251 + 65 + 170 + 170 + 170 + 8) 𝑚𝑜𝑑 256

𝐻3 = 834 𝑚𝑜𝑑 256 = 66

Hash Finalization

𝐻𝐹𝑖𝑛𝑎𝑙 = 120 || 251|| 66

The hash value of M="GROUPSECOND" is 120 251 66

Results and Discussion Using Padding With Bit 1 (Byte 0xFF)

Data Input

In the data input, the message (M) and character block size are as follows:

M= GROUP TWO

Block size: 5 characters

M1=”KELOM”, M2=”POKDU”, M3=”A”

Padding

The original M3 message consists of only one character, so it needs to be padded to a block length

of 5 characters (40 bits) with the following steps:

1. ASCII to binary conversion: "A" → ASCII(65) → 01000001

2. Add byte 0xFF (11111111) 40 bits: 01000001 11111111 11111111 11111111 11111111

3. Add message length: Length of "A" is 8 bits →binary: 00001000

4. Combine each binary, final result: 01000001 11111111 11111111 11111111 00001000

5. Convert the final result to decimal: [65, 255, 255, 255, 8]

Padding result M3 =[65, 255, 255, 255, 8]

Hashing Initialization

Initial chaining value (H0) = 0

Iterative Block Hashing

Block 1: M1=”KELOM”

𝐻1 = 𝑓(𝐻0, 𝑀1 = (0 + ASCII(′K′) + ASCII(′E′) + ASCII(′L′) + ASCII(′O′)
+ ASCII(′M′)) 𝑚𝑜𝑑 256

𝐻1 = (0 + 75 + 69 + 76 + 79 + 77) 𝑚𝑜𝑑 256

𝐻1 = 376 𝑚𝑜𝑑 256 = 120

Block 2: M2=”POKDU”

𝐻2 = 𝑓(𝐻1, 𝑀2 = (0 + ASCII(′P′) + ASCII(′O′) + ASCII(′K′) + ASCII(′D′)
+ ASCII(′U′)) 𝑚𝑜𝑑 256

𝐻2 = (120 + 80 + 79 + 75 + 68 + 85) 𝑚𝑜𝑑 256

𝐻2 = 507 𝑚𝑜𝑑 256 = 251

Block 3: M3= Padding Result [65, 255, 255, 255, 8]

𝐻3 = (251 + 65 + 255 + 255 + 255 + 8) 𝑚𝑜𝑑 256

𝐻3 = 1089 𝑚𝑜𝑑 256 = 65

Hash Finalization

𝐻𝐹𝑖𝑛𝑎𝑙 = 120 || 251|| 66

The hash value of M="GROUPSECOND" is 120 251 65

Parameter Evaluation

In the parameter evaluation process, the Python code implementation is carried out on Google

Colab, because the message (M) used in this process must have a more significant length. Manual

calculations only include simple examples to explain the basic concept of padding in the Merkle-

 

Analysis of the Effect of Padding Schemes on Entropy, Bit Distribution, Hash Collisions, and Processing

Time in Merkle-Damgård (Valois Vicenti Sirait,et.al)

41

Damgård algorithm. However, to obtain more accurate and representative results of the influence of

the analyzed padding on bit distribution, entropy, hash collision, and processing time, a longer

message (M) is required. Therefore, testing is carried out using the Python code implementation,

which is able to handle larger message sizes (M) and provide a more in-depth analysis of each

evaluation parameter.

In the implementation of the Python code, in calculating Bit Distribution, the format() function

is used to convert bytes into binary format and the count() function to count the number of bits 0 and

1 in a binary string. To calculate Shannon Entropy, the math.log2() function is used to calculate the

base 2 logarithm and the count() function to count the frequency of occurrence of bits 0 and 1 in a

binary string. In the Hash Collision test, the implemented hash function is used, namely

(merkle_damgard_hash) to calculate the hash of the message, while the dictionary is used to track

whether the resulting hash already exists, indicating a collision. Finally, to measure Processing Time,

the time.time() function is used to record the time before and after the hash process, then calculate

the difference to get the execution time which indicates the computational cost.

In the implementation of the Python code, the input data is specified as message(M) and

character blocks as follows:

Message (M) = “RESEARCH JOURNAL OF CRYPTOGRAPHY AND

STEGANOGRAPHY COURSE ON THE TOPIC OF PADDING ANALYSIS WITH ONE AND

ZERO BITS, PADDING WITH REPEATING PATTERN AND PADDING WITH ONE BYTE IN

MERKLE-DAMGARD: A COMPARATIVE STUDY OF THE BEST PADDING WITH

EVALUATION PARAMETERS OF BIT DISTRIBUTION, SHANNON ENTROPY, HASH

COLLISION AND PROCESSING TIME & . WRITTEN BY GROUP TWO: VALOIS VICENTI

SIRAIT, MIA ELISABET MALAU, JENI PERCANI SITUMORANG, FIFTH SEMESTER

STUDENTS, INFORMATICS ENGINEERING STUDY PROGRAM, FACULTY OF

COMPUTER SCIENCE, SANTO THOMAS CATHOLIC UNIVERSITY, "SETIA BUDI STREET,

TANJUNG SARI, MEDAN SELAYANG SUBDISTRICT, MEDAN CITY, NORTH SUMATERA,

INDONESIA"

Character block = 64 characters

In the data hashing test, each type of padding analyzed is tested using several parameters to

evaluate its performance. Here is a visualization of the parameter evaluation for each hash with the

analyzed padding.

a. Bit Distribution

Bit distribution counts the number of bits 0 and 1 in the hash to assess the balance of the bit

distribution. The bit distribution results show the difference in the balance between bits 0 and

1 in each type of padding. In padding with bits 1 & 0, there are 49 bits 0 and 39 bits 1. In the

0xAA pattern padding, there are 52 bits 0 and 36 bits 1. While in padding with bit 1 (0xFF),

the bit distribution is more balanced, with 48 bits 0 and 40 bits 1. Analyzed, padding bit 1

(0xFF) produces a more balanced bit distribution, indicating that this padding produces a more

random hash compared to other types of padding. Can be seen in Figure 2.

Figure 2. Bit Distribution Results

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 1, 2024 : 35-44

42

b. Shannon Entropy

Shannon entropy is used to measure the randomness of the distribution of bits in a hash value,

where the higher the entropy value, the more random the result.(Supriyatna, nd). The results

of the Shannon entropy measurement show differences in the level of randomness between

each type of padding. In padding with bits 1 & 0, the entropy value was recorded at 0.9907,

while in the 0xAA pattern padding, the entropy was slightly lower, which was 0.9760. Padding

with bit 1 (0xFF) produced the highest entropy value, which was 0.9940. Analyzed, padding

bit 1 (0xFF) has the highest entropy value, indicating that the resulting hash is more random

and more difficult to predict, providing better security in the context of data processing. Can

be seen in Figure 3.

Figure 3.Bit Distribution Results

c. Hash Collision

Hash Collision is tested by generating multiple hashes for different messages and checking

whether there are any identical hash values, indicating potential security issues. The collision

rate test results show that padding bit 1 (0xFF) has a slightly lower collision rate (74.90%)

compared to padding bits 1 & 0 (75.30%) and padding pattern 0xAA (75.00%). However, the

high collision rate for all three types of padding indicates that the hash function used is still

susceptible to possible collisions. This indicates that improvements are needed in the design

of the hash function to reduce the possibility of collisions and improve overall security. This

can be seen in Figure 4.

Figure 4.Hash Collision Results

 

Analysis of the Effect of Padding Schemes on Entropy, Bit Distribution, Hash Collisions, and Processing

Time in Merkle-Damgård (Valois Vicenti Sirait,et.al)

43

d. Processing Time

Processing time to determine the duration of time required to process and display the hash

results of the message (M), provides an overview of the computational efficiency for each type

of padding. The evaluation results show that padding bits 1 & 0 have the fastest processing

time, which is 0.000132 seconds, followed by padding pattern 0xAA with a time of 0.000157

seconds, and padding bit 1 (0xFF) with a time of 0.000177 seconds. Can be seen in Figure 5.

Figure 5.Hash Collision Results

A summary of the research results on padding analysis in Merkle-Damgård is shown in Table

1. This table presents a comparison of the total bits, bit distribution, Shannon entropy value, the

number of hash collisions in the test, the collision rate (%), and the processing time for each type of

padding. From this data, it can be analyzed how each type of padding affects the characteristics of

the resulting hash, including the balance of bit distribution, the degree of randomness, the probability

of collision, and the efficiency of execution time.

Table 1.Parameter Evaluation Results

Parameter Padding bits 1&0 Padding pattern 0xAA Padding bit 1 (0xFF)

Total Bit 88 88 88

Bit Distribution (0/1) 49 / 39 52 / 36 48 / 40

Shannon Entropy 0.9907 0.9760 0.9940

Hash Collision (tests) 753 750 749

Collision Rate 75.30% 75.00% 74.90%

Processing Time (sec) 0.000132 0.000157 0.000177

4. CONCLUSION

Based on the research results obtained, it can be concluded that the type of padding used has

an effect on the characteristics of the resulting hash. In terms of bit distribution, padding bit 1 (0xFF)

has a more balanced bit distribution (48 bits 0 and 40 bits 1), which indicates a better level of

randomness compared to other paddings. Shannon entropy also shows that padding bit 1 (0xFF) has

the highest entropy value (0.9940), indicating a more unpredictable hash. However, in the hash

collision test, padding bit 1 (0xFF) is only slightly better with a collision rate of 74.90%, compared

to padding bits 1 & 0 (75.30%) and the 0xAA pattern (75.00%). However, this collision rate is still

relatively high, indicating that the hash function can be further improved to reduce the likelihood of

collisions. In terms of processing time, padding bits 1 & 0 have the fastest execution time (0.000132

seconds), followed by padding pattern 0xAA (0.000157 seconds) and padding bit 1 (0xFF) (0.000177

seconds). The difference in processing time is very small and insignificant, so time efficiency is not

the main factor in determining the best padding. Overall, padding bit 1 (0xFF) gives better results in

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 1, 2024 : 30-34

44

terms of bit distribution balance and entropy, although the difference is not too far from other

paddings. However, the high collision rate indicates that further optimization of the hash function is

still needed to improve its security and uniqueness.

REFERENCE

Anwar, M. R., Apriani, D., & Adianita, I. R. (2021). Hash Algorithm In Verification Of Certificate

Data Integrity And Security. APTISI Transactions on Technopreneurship, 3(2), 67–74.

https://doi.org/10.34306/att.v3i2.212

Ariesanda, B. (n.d.). Analisis dan Pengembangan Merkle-Damgård Structure.

Coron, J.-S., Dodis, Y., Malinaud, C., & Puniya, P. (n.d.). Merkle-Damgård Revisited : how to

Construct a Hash Function.

Ghanimi, H. M. A., Melgarejo-Bolivar, R. P., Tumi-Figueroa, A., Ray, S., Dadheech, P., &

Sengan, S. (2024). Merkle-Damgård hash functions and blockchains: Securing electronic

health records. Journal of Discrete Mathematical Sciences and Cryptography, 27(2), 237–

248. https://doi.org/10.47974/JDMSC-1878

Harsa Kridalaksana, A., & Arifin, Z. (2016). 8. SaKTI Henry_KRIPTOGRAFI AES MODE CBC

PADA CITRA DIGITAL BERBASIS ANDROID. In Prosiding Seminar Ilmu Komputer dan

Teknologi Informasi (Vol. 1, Issue 1).

Maysanjaya, I. M. D., & Dermawan, K. T. (2024). MANAJEMEN BASIS DATA (Teori dan

Implementasi) (I). PT. Sonpedia Publishing Indonesia.

Nandi, M. (n.d.). Characterizing Padding Rules of MD Hash Functions Preserving Collision

Security.

Sitorus, N., Sharon, J., Sinaga, G., Samosir, S. L., Terapan, S., Rekayasa, T., Lunak, P., & Del, I.

T. (2024). Analisis Kinerja Algoritma Hash pada Keamanan Data: Perbandingan Antara

SHA-256, SHA-3, dan Blake2. Jurnal Quancom, 2(2).

Supriyatna, A. (n.d.). Analisis Bibliometrik Shannon Entropy: Tren Penelitian dan Relevansi

Multidimensional. In Jurnal Infortech (Vol. 6, Issue 2).

http://ejournal.bsi.ac.id/ejurnal/index.php/infortech

Thampi, S. M., Gelenbe, E., Atiquzzaman, M., Chaudhary, V., & Li Editors, K.-C. (n.d.). Lecture

Notes in Electrical Engineering 735 (Vol. 1). http://www.springer.com/series/7818

Tiwari, H. (2017). Merkle-Damgård Construction Method and Alternatives: A Review. In Survey

Paper JIOS (Vol. 41, Issue 2).

Waluyo, T. (2023). Manajemen Agrobisnis di Era Society 5.0 (K. Retnawati, Ed.; I). CV. Mega

Press Nusantar.

