
Login : Jurnal Teknologi Komputer
ISSN : 2302-9692 (print) | 2723-8695 (online)
Vol. 18, No. 02, 2024, pp. 107-113

 http://login.seaninstitute.org/index.php/Login 107

Journal homepage: http://login.seaninstitute.org/index.php/Login

Steganography With End Of File

Zuvernius Sitohang1, Yohana Desma R. Munte2, Pembinata Taringan3, Hiskia Hasugian⁴,

Trihadi Pinem⁵
Universitas Katolik Santo Thomas Medan dan l. Setia Budi No.479, Tj. Sari, Kec. Medan Selayang, Kota

Medan, Sumatera Utara 1

Article Info ABSTRACT

Keywords:

Steganography, Cryptography,

EOF.

 Steganography is the science and art of hiding secret messages in other

messages, so that the existence of the message cannot be known by third

parties. One method used in steganography is the EOF (End of File) message

insertion method, which is inserting data at the end of a file by providing a

special mark to identify the beginning and end of the data. This technique is

used to insert data as needed, and the steganographed file does not appear to

change visually or audibly, even though the file size becomes larger. In this

regard, this technique can be applied to protect the copyright of digital

products, such as software or multimedia, through digital watermarking

techniques that use the EOF method to insert information or messages as

permanent identification in digital files. In addition, in an effort to improve

security, a technique for combining Blowfish cryptography with Hexa

steganography is also proposed. This technique has advantages over DCS

steganography, namely fewer pixel color changes, so that the inserted data is

more difficult to detect and easier to maintain even if the stego image is

processed or edited. The results of the study show that the combination of

Blowfish cryptography with Hexa steganography is more effective than DCS

steganography in protecting the inserted data. The test was carried out by

analyzing the robustness of Hexa steganography using the PNSR test to

determine the level of change in the original image and the inserted image.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Zuvernius Sitohang

Universitas Katolik Santo Thomas Medan dan l. Setia Budi No.479, Tj. Sari, Kec. Medan Selayang, Kota Medan,

Sumatera Utara

E-mail: zuvernius@gmail.com

1. INTRODUCTION

Crime and criminals today involve information and communication technology. The use of

computers, mobile phones, email, the internet, and other digital devices can invite various parties to

commit crimes based on communication technology. Therefore, techniques are needed to secure the

sending of text messages so that people cannot tap or take text messages to commit crimes.

Cryptography can be the answer to this problem. As a science that has been applied to data

security, cryptography can be used to secure important data in a file. The data contained in the file is

encrypted or encrypted to be converted into certain symbols so that only certain people can know the

contents of the data.(Rohmanu, 2017).

Steganography is a method to hide a message in another message where others do not know

that the message has a more important message in it. The purpose of developing Steganography is to

keep the message data inserted in digital image media from being detected by other applications that

there is a secret text message in the digital image.

http://login.seaninstitute.org/index.php/Login
https://creativecommons.org/licenses/by-sa/4.0/
mailto:zuvernius@gmail.com

Login : Jurnal Teknologi Komputer, Vol. 18, No. 2, 2024 : 107-113

108

One of the techniques for inserting messages into images is the end of file method.(Yudharta

Pasuruan, 2022)which uses the Least Significant bit (LSB) algorithm. LSB steganography is one of

the easiest steganography methods to implement, namely by changing the least significant bit in a

file. Changes to the Least Significant Bit (LSB) will only result in almost insignificant changes to

the file. Implementation of the Least Significant Bit (LSB) technique and steganography techniques

has been proven to provide advantages in providing good stego image quality and maintaining

imperceptibility.(Mido and friends, 2022).

2. METHOD

The general design flow of the Steganography method with the End Of File method can be

seen in Figure 1.

Figure 1Insertion flow with EOF method

Explanation of Figure 1 Insertion Flow with EOF Method

1. Sender Initiates Process: The sender initiates the steganography process to hide the secret data

in a cover file.

2. Confidential File and Data Representation: The sender has a digital file that will be used as a

data hiding place Cover File (F), The sender has confidential data that he wants to hide in the

cover file. Confidential Data (D)

3. Embedding Process: Add START Marker (Optional): The sender can add START marker

before the secret data if needed. Merge Secret Data: The sender merges the secret data (S) into

the cover file (F) using the merge operation C = F + S. Add END Marker (Optional): The

sender can also add END marker to indicate the end of the secret data. Save Stego File: The

sender saves the stego file (C) containing the cover file and secret data.

4. Sending Stego File to Recipient: The sender sends the Stego File (C) to the recipient via secure

media such as email.

5. Recipient Receives Stego File The recipient receives a stego file (C) containing the secret data

hidden in a cover file.

6. Extraction Process (Secret Data Retrieval) The receiver checks whether there is a START

marker indicating the start of the secret data. The receiver extracts the secret data contained in

the stego file (C) starting from byte n+1 to n+m. The receiver checks whether there is an END

marker to ensure the end of the secret data. The receiver checks whether the extracted data is

valid and as expected.

Steganography With End Of File (Zuvernius Sitohang,et.al)

109

7. Receiver Gets Secret Data: After the extraction process is complete, the receiver gets the secret

data hidden by the sender. The steganography process is complete with the secret data

successfully hidden and retrieved.

A4 Size

All articles are written in 10pt Nunito font. The title of the article is written in 12pt Nunito

font. The author's name is written in 10pt Nunito font. The author's affiliation is written in 8pt Nunito

font. Corresponding authors must include an email address. The article title and abstract are written

in one column (one column) and aligned left and right. The author's name is written without including

a title.

3. RESULTS AND DISCUSSION

Ascii Byte Representation

Known data, Main File : "HELLO WORD"

Table 1. Data representation

Character Byte (Ascii)

H 72

English 69

I 76

I 76

O 79

Space 32

We 87

O 79

R 82

I 76

D 68

Main file in Bytes F = 72, 69, 76, 76, 79, 32, 87, 79, 82, 76, 68

The main file length is 11 bytes. Secret Data : : "1234"

Table 2.Byte representation

Character Byte (Ascii)

1 49

2 50

3 51

4 52

Secret data in Bytes S = {49, 50, 51, 52}. Secret data length (mmm): m=4

Embedding Process (Secret Data Insertion)

Basic formula: C = F + S

Description: Result file = Main file appended with secret data behind it. Merge Bytes from the

main file and secret data:

Table 3.Merge Bytes from the public file and secret data

index Byte (Ascii) Character Information

1 72 H Main File

2 69 English Main File

3 76 I Main File

4 76 I Main File

5 79 O Main File

6 32 SPACE Main File

7 87 We Main File

8 79 O Main File

9 82 R Main File

10 76 I Main File

Login : Jurnal Teknologi Komputer, Vol. 18, No. 2, 2024 : 107-113

110

index Byte (Ascii) Character Information

11 68 D Main File

12 49 1 Confidential Data

13 50 2 Confidential Data

14 51 3 Confidential Data

15 52 4 Confidential Data

Value Substitution:

Value = {72,69,76,76,79,32,87,79,82,76,68} + {49,50,51,52},

Result: C={72,69,76,76,79,32,87,79,82,76,68,49,50,51,52}

After insertion, the resulting file, C="HELLO WORLD1234". Where the main file remains

the same and the secret data is added at the end of the file. The length of the resulting file:

C=n+m=11+4=15 bytes.

Extraction Process (Secret Data Retrieval)

Table 4. File Length Identification

Data type long

Main file (n) 11

Confidential Data (m) 4

The secret data is located from bytes (n+1) to (n+m)

Table 5.Extract bytes from the result file

calculation Results

Initial index (n+1) 11 + 1 = 12

Final index (n+m) 11 + 4 = 15

table 6.extract bytes from index 12 to 15

Index (position in file) Byte (ascii) Character

12 49 1

13 50 2

14 51 3

15 52 4

Extracted Result Bytes: S = "1234"

S value={49,50,51,52}

Table 7.Convert bytes to text

Byte (ascii) character

49 1

50 2

51 3

52 4

The text we get is: "1234". The final result is the original text entered earlier: "1234".

Verify Results

1. Main File: Bytes: 72, 69, 76, 76, 79, 32, 87, 79, 82, 76, 68→ "HELLO WORLD"

2. Secret Data:Bytes: 49, 50, 51, 52→ "1234"

3. Result File :Bytes: 72, 69, 76, 76, 79, 32, 87, 79, 82, 76, 68, 49, 50, 51, 52→ "HELLO

WORLD1234"

Extract Secret Data: Bytes: 49, 50, 51, 52 → "1234"

Testing with Python

Insert the main file and secret data. The first step is the process of inserting secret data. We

insert the main file and the secret message to be inserted. Here, all characters need to be converted

to ASCII or binary code to simplify the calculation process, because the insertion process is based

on the ASCII code of the characters we entered earlier. This is the main file converted to ASCII.

Steganography With End Of File (Zuvernius Sitohang,et.al)

111

Figure 1. converted to ASCII

Secret Data Table containing characters to be converted to ASCII. The secret data must also

be converted to ASCII or binary. Later, the converted ASCII codes will be added up, or in other

words, the calculation process will be carried out using the existing formula, namely by adding the

ASCII code of the main file with the ASCII code of the secret message.

Figure 2. Add the ASCII code of the main file with the ASCII code of the secret message.

The Embedding process is presented in this table, where all the processed calculation results

are displayed. This is an addition process where the main file will be embedded with the secret

message. However, we need to provide an indication whether each character belongs to the main file

or the secret message to facilitate the extraction process. In this process, the main file appears before

the secret data.

Figure 3. calculation results

Login : Jurnal Teknologi Komputer, Vol. 18, No. 2, 2024 : 107-113

112

Finally, the embedded message is extracted again. The final process is extraction, where the

message we inserted in the previous step is extracted from the file. This process is the reverse of the

insertion process—while insertion involves addition, the extraction process involves subtraction.

Figure 4. Re-extracted

4. CONCLUSION

The EOF method is more suitable for short files. This is because: Computational Complexity:

The process of adding and subtracting ASCII codes for each character can be very complicated and

time-consuming when applied to large files. Risk of Error: The more data, the higher the risk of

errors during the insertion and extraction process, especially if there are no clear markers. File Size:

Adding ASCII data can increase the file size, which may be inefficient for large files. However, if

this method is to be applied to large files, optimization is needed, such as using a more efficient

algorithm or special markers (such as EOF) to simplify the extraction process.

REFERENCE

Ari Anti, U., Harsa Kridalaksana, A., & Marisa Khairina, D. (2017). VIDEO STEGANOGRAPHY

USING LEAST SIGNIFICANT BIT (LSB) AND END OF FILE (EOF) METHODS. 12(2).

Cahyono, A. D., Yasin, M., & Malang, U. N. (2019). Steganography implementation using end of

file (EOF) method in data security (Case study on AVI, MP3, and JPEG files).

Edisuryana, M., Isnanto, R. R., & Somantri, M. (n.d.). STEGANOGRAPHY APPLICATION ON

BITMAP FORMAT IMAGE USING END OF FILE METHOD.

Fauzi, A. (2019). ANALYSIS OF TEXT MESSAGE COMBINATION INTO AUDIO FILES

UTILIZING DATA ENCRYPTION STANDARD ALGORITHM AND END OF FILE

METHOD. Journal of Kaputama Informatics Engineering (JTIK), 3(1).

Kusumaningsih, D., Pudoli, A., & Rahmadan, I. (2017). IMPLEMENTATION OF RIJNDAEL

ALGORITMA CRYPTOGRAPHY AND END OF FILE METHOD STEGANOGRAPHY FOR

DATA SECURITY (Vol. 9, Issue 1).

Mido, A. R., Iman, E., & Ujianto, H. (2022). ANALYSIS OF IMAGE EFFECT ON THE

COMBINATION OF RSA CRYPTOGRAPHY AND LSB STEGANOGRAPHY. 9(2), 279-286.

https://doi.org/10.25126/jtiik.202294852

Rohmanu, A. (2017). CRYPTOGRAPHY AND STEGANOGRAPHY IMPLEMENTATION

WITH DES ALGORITHM METHOD AND END OF FILE METHOD. SIMANTIK

Informatics Journal, 2(1). www.jurnal.stmikcikarang.ac.id

Yudharta Pasuruan, U. (2022). Application of the End Of File Steganography Method to Insert

Messages in Digital Images Rahmad Zainul Abidin. http://sipi.usc.edu/database/database.php

Darwis, D., & KISWORO, K. (2017). Teknik Steganografi untuk Penyembunyian Pesan Teks

Menggunakan Algoritma End Of File. Explore: Jurnal Sistem Informasi dan

Telematika, 8(2), 331304.

http://sipi.usc.edu/database/database.php

Steganography With End Of File (Zuvernius Sitohang,et.al)

113

Minarni, M., Ikram, A., Warman, I., & Swara, G. Y. (2023). Implementasi Algoritma Vigenere

Cipher Dan End Of File Pada Steganografi Video. Jurnal Minfo Polgan, 12(1), 432-441.

Edisuryana, M., Isnanto, R. R., & Somantri, M. (2013). Aplikasi Steganografi Pada Citra

Berformat Bitmap Dengan Menggunakan Metode End Of File. Transient: Jurnal Ilmiah

Teknik Elektro, 2(3), 734-742.

